ai-content-maker/.venv/Lib/site-packages/torch/include/ATen/native/Padding.h

63 lines
2.0 KiB
C++

#pragma once
#include <ATen/core/Tensor.h>
#include <ATen/native/DispatchStub.h>
namespace at::native {
using padding_fn = void (*)(const Tensor&, const Tensor&, IntArrayRef);
// reflection padding
DECLARE_DISPATCH(padding_fn, reflection_pad1d_kernel);
DECLARE_DISPATCH(padding_fn, reflection_pad1d_backward_kernel);
DECLARE_DISPATCH(padding_fn, reflection_pad2d_kernel);
DECLARE_DISPATCH(padding_fn, reflection_pad2d_backward_kernel);
DECLARE_DISPATCH(padding_fn, reflection_pad3d_kernel);
DECLARE_DISPATCH(padding_fn, reflection_pad3d_backward_kernel);
// replication padding
DECLARE_DISPATCH(padding_fn, replication_pad1d_kernel);
DECLARE_DISPATCH(padding_fn, replication_pad1d_backward_kernel);
DECLARE_DISPATCH(padding_fn, replication_pad2d_kernel);
DECLARE_DISPATCH(padding_fn, replication_pad2d_backward_kernel);
DECLARE_DISPATCH(padding_fn, replication_pad3d_kernel);
DECLARE_DISPATCH(padding_fn, replication_pad3d_backward_kernel);
namespace padding {
template <int dim>
static inline void check_valid_input(const Tensor& input, IntArrayRef padding) {
TORCH_CHECK(padding.size() == 2 * dim,
"padding size is expected to be ", 2 * dim,
", but got: ", padding.size());
int input_dim = input.dim();
bool is_batch_mode = input_dim == (dim + 2);
bool valid_batch_mode = is_batch_mode;
bool valid_non_batch_mode = !is_batch_mode;
if (is_batch_mode) {
// allow batch size of 0-dim.
for (const auto d : c10::irange(1, input_dim)) {
valid_batch_mode = valid_batch_mode && input.size(d) != 0;
}
} else {
for (const auto d : c10::irange(0, input_dim)) {
valid_non_batch_mode = valid_non_batch_mode && input.size(d) != 0;
}
}
// allow empty batch size but not other dimensions.
TORCH_CHECK(valid_batch_mode || valid_non_batch_mode,
"Expected ", dim + 1, "D or ", dim + 2,
"D (batch mode) tensor with possibly 0 batch size and other non-zero dimensions for input, but got: ",
input.sizes());
}
} // namespace padding
} // at::native