114 lines
3.7 KiB
Python
114 lines
3.7 KiB
Python
from contextlib import contextmanager
|
|
from typing import Any, List, Tuple, cast
|
|
import random
|
|
import torch
|
|
import time
|
|
from torch.utils.benchmark import Timer
|
|
|
|
def extract_ir(filename: str) -> List[str]:
|
|
BEGIN = "<GRAPH_EXPORT>"
|
|
END = "</GRAPH_EXPORT>"
|
|
pfx = None
|
|
current = ""
|
|
graphs = []
|
|
with open(filename) as f:
|
|
split_strs = f.read().split(BEGIN)
|
|
for i, split_str in enumerate(split_strs):
|
|
if i == 0:
|
|
continue
|
|
end_loc = split_str.find(END)
|
|
if end_loc == -1:
|
|
continue
|
|
s = split_str[:end_loc]
|
|
pfx = split_strs[i - 1].splitlines()[-1]
|
|
lines = [x[len(pfx):] for x in s.splitlines(keepends=True)]
|
|
graphs.append(''.join(lines))
|
|
|
|
return graphs
|
|
|
|
|
|
def make_tensor_from_type(inp_type: torch._C.TensorType):
|
|
size = inp_type.sizes()
|
|
stride = inp_type.strides()
|
|
device = inp_type.device()
|
|
dtype = inp_type.dtype()
|
|
assert size is not None
|
|
assert stride is not None
|
|
assert device is not None
|
|
assert dtype is not None
|
|
return torch.empty_strided(size=size, stride=stride, device=device, dtype=dtype)
|
|
|
|
def load_graph_and_inputs(ir: str) -> Tuple[Any, List[Any]]:
|
|
graph = torch._C.parse_ir(ir, parse_tensor_constants=True)
|
|
graph.makeMultiOutputIntoTuple()
|
|
inputs = []
|
|
for inp in graph.inputs():
|
|
if isinstance(inp.type(), torch._C.FloatType):
|
|
inputs.append(random.uniform(.1, 100))
|
|
elif isinstance(inp.type(), torch._C.IntType):
|
|
inputs.append(random.randint(1, 100))
|
|
elif isinstance(inp.type(), torch._C.TensorType):
|
|
tensorType = cast(torch._C.TensorType, inp.type())
|
|
inputs.append(make_tensor_from_type(tensorType))
|
|
elif isinstance(inp.type(), torch._C.BoolType):
|
|
inputs.append(random.randint(0, 1) == 1)
|
|
else:
|
|
raise NotImplementedError(f"A default value is not implemented for type {inp.type()}")
|
|
|
|
func = torch._C._create_function_from_graph("forward", graph)
|
|
torch._C._jit_pass_erase_shape_information(func.graph)
|
|
return (func, inputs)
|
|
|
|
def time_cuda(fn, inputs, test_runs):
|
|
t = Timer(stmt="fn(*inputs)", globals={"fn": fn, "inputs" : inputs})
|
|
times = t.blocked_autorange()
|
|
return times.median * 1000 # time in ms
|
|
|
|
def time_cpu(fn, inputs, test_runs):
|
|
s = time.perf_counter()
|
|
for _ in range(test_runs):
|
|
fn(*inputs)
|
|
e = time.perf_counter()
|
|
return (e - s) / test_runs * 1000 # time in ms
|
|
|
|
def run_test(ir, inputs, *, warmup_runs=10, test_runs=20) -> float:
|
|
graph, _ = load_graph_and_inputs(ir)
|
|
for _ in range(warmup_runs):
|
|
graph(*inputs)
|
|
|
|
is_cpu = None
|
|
for input in inputs:
|
|
if isinstance(input, torch.Tensor):
|
|
is_cpu = input.device.type == "cpu"
|
|
break
|
|
assert is_cpu is not None
|
|
|
|
out = time_cpu(graph, inputs, test_runs) if is_cpu else time_cuda(graph, inputs, test_runs)
|
|
return out
|
|
|
|
@contextmanager
|
|
def no_fuser(*args, **kwargs):
|
|
old_optimize = torch._C._get_graph_executor_optimize(False)
|
|
try:
|
|
yield
|
|
finally:
|
|
torch._C._get_graph_executor_optimize(old_optimize)
|
|
|
|
def run_baseline_no_fusion(ir, inputs) -> float:
|
|
with no_fuser():
|
|
return run_test(ir, inputs)
|
|
|
|
|
|
def run_nnc(ir, inputs, dynamic) -> float:
|
|
try:
|
|
strat = [("DYNAMIC", 10)] if dynamic else [("STATIC", 10)]
|
|
old_strat = torch.jit.set_fusion_strategy(strat)
|
|
with torch.jit.fuser("fuser1"):
|
|
return run_test(ir, inputs)
|
|
finally:
|
|
torch.jit.set_fusion_strategy(old_strat)
|
|
|
|
def run_nvfuser(ir, inputs) -> float:
|
|
with torch.jit.fuser("fuser2"):
|
|
return run_test(ir, inputs)
|