ai-content-maker/.venv/Lib/site-packages/einops/array_api.py

125 lines
5.1 KiB
Python

from typing import List, Tuple, Sequence
from .einops import Tensor, Reduction, EinopsError, _prepare_transformation_recipe, _apply_recipe_array_api
from .packing import analyze_pattern, prod
def reduce(tensor: Tensor, pattern: str, reduction: Reduction, **axes_lengths: int) -> Tensor:
if isinstance(tensor, list):
if len(tensor) == 0:
raise TypeError("Einops can't be applied to an empty list")
xp = tensor[0].__array_namespace__()
tensor = xp.stack(tensor)
else:
xp = tensor.__array_namespace__()
try:
hashable_axes_lengths = tuple(axes_lengths.items())
recipe = _prepare_transformation_recipe(pattern, reduction, axes_names=tuple(axes_lengths), ndim=tensor.ndim)
return _apply_recipe_array_api(
xp,
recipe=recipe,
tensor=tensor,
reduction_type=reduction,
axes_lengths=hashable_axes_lengths,
)
except EinopsError as e:
message = ' Error while processing {}-reduction pattern "{}".'.format(reduction, pattern)
if not isinstance(tensor, list):
message += "\n Input tensor shape: {}. ".format(tensor.shape)
else:
message += "\n Input is list. "
message += "Additional info: {}.".format(axes_lengths)
raise EinopsError(message + "\n {}".format(e))
def repeat(tensor: Tensor, pattern: str, **axes_lengths) -> Tensor:
return reduce(tensor, pattern, reduction="repeat", **axes_lengths)
def rearrange(tensor: Tensor, pattern: str, **axes_lengths) -> Tensor:
return reduce(tensor, pattern, reduction="rearrange", **axes_lengths)
def asnumpy(tensor: Tensor):
import numpy as np
return np.from_dlpack(tensor)
Shape = Tuple
def pack(tensors: Sequence[Tensor], pattern: str) -> Tuple[Tensor, List[Shape]]:
n_axes_before, n_axes_after, min_axes = analyze_pattern(pattern, "pack")
xp = tensors[0].__array_namespace__()
reshaped_tensors: List[Tensor] = []
packed_shapes: List[Shape] = []
for i, tensor in enumerate(tensors):
shape = tensor.shape
if len(shape) < min_axes:
raise EinopsError(
f"packed tensor #{i} (enumeration starts with 0) has shape {shape}, "
f"while pattern {pattern} assumes at least {min_axes} axes"
)
axis_after_packed_axes = len(shape) - n_axes_after
packed_shapes.append(shape[n_axes_before:axis_after_packed_axes])
reshaped_tensors.append(xp.reshape(tensor, (*shape[:n_axes_before], -1, *shape[axis_after_packed_axes:])))
return xp.concat(reshaped_tensors, axis=n_axes_before), packed_shapes
def unpack(tensor: Tensor, packed_shapes: List[Shape], pattern: str) -> List[Tensor]:
xp = tensor.__array_namespace__()
n_axes_before, n_axes_after, min_axes = analyze_pattern(pattern, opname="unpack")
# backend = get_backend(tensor)
input_shape = tensor.shape
if len(input_shape) != n_axes_before + 1 + n_axes_after:
raise EinopsError(f"unpack(..., {pattern}) received input of wrong dim with shape {input_shape}")
unpacked_axis: int = n_axes_before
lengths_of_composed_axes: List[int] = [-1 if -1 in p_shape else prod(p_shape) for p_shape in packed_shapes]
n_unknown_composed_axes = sum(x == -1 for x in lengths_of_composed_axes)
if n_unknown_composed_axes > 1:
raise EinopsError(
f"unpack(..., {pattern}) received more than one -1 in {packed_shapes} and can't infer dimensions"
)
# following manipulations allow to skip some shape verifications
# and leave it to backends
# [[], [2, 3], [4], [-1, 5], [6]] < examples of packed_axis
# split positions when computed should be
# [0, 1, 7, 11, N-6 , N ], where N = length of axis
split_positions = [0] * len(packed_shapes) + [input_shape[unpacked_axis]]
if n_unknown_composed_axes == 0:
for i, x in enumerate(lengths_of_composed_axes[:-1]):
split_positions[i + 1] = split_positions[i] + x
else:
unknown_composed_axis: int = lengths_of_composed_axes.index(-1)
for i in range(unknown_composed_axis):
split_positions[i + 1] = split_positions[i] + lengths_of_composed_axes[i]
for j in range(unknown_composed_axis + 1, len(lengths_of_composed_axes))[::-1]:
split_positions[j] = split_positions[j + 1] - lengths_of_composed_axes[j]
shape_start = input_shape[:unpacked_axis]
shape_end = input_shape[unpacked_axis + 1 :]
slice_filler = (slice(None, None),) * unpacked_axis
try:
return [
xp.reshape(
# shortest way slice arbitrary axis
tensor[(*slice_filler, slice(split_positions[i], split_positions[i + 1]), ...)],
(*shape_start, *element_shape, *shape_end),
)
for i, element_shape in enumerate(packed_shapes)
]
except BaseException:
# this hits if there is an error during reshapes, which means passed shapes were incorrect
raise RuntimeError(
f'Error during unpack(..., "{pattern}"): could not split axis of size {split_positions[-1]}'
f" into requested {packed_shapes}"
)