ai-content-maker/.venv/Lib/site-packages/spacy_legacy/architectures/entity_linker.py

35 lines
1.1 KiB
Python

from typing import Optional, List
from thinc.types import Floats2d
from thinc.api import Model
from spacy.util import registry
from spacy.tokens import Doc
def EntityLinker_v1(
tok2vec: Model, nO: Optional[int] = None
) -> Model[List[Doc], Floats2d]:
chain = registry.get("layers", "chain.v1")
clone = registry.get("layers", "clone.v1")
with Model.define_operators({">>": chain, "**": clone}):
token_width = tok2vec.maybe_get_dim("nO")
Linear = registry.get("layers", "Linear.v1")
output_layer = Linear(nO=nO, nI=token_width)
list2ragged = registry.get("layers", "list2ragged.v1")
reduce_mean = registry.get("layers", "reduce_mean.v1")
residual = registry.get("layers", "residual.v1")
Maxout = registry.get("layers", "Maxout.v1")
model = (
tok2vec
>> list2ragged()
>> reduce_mean()
>> residual(Maxout(nO=token_width, nI=token_width, nP=2, dropout=0.0)) # type: ignore[arg-type]
>> output_layer
)
model.set_ref("output_layer", output_layer)
model.set_ref("tok2vec", tok2vec)
return model