100 lines
4.4 KiB
Python
100 lines
4.4 KiB
Python
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"AQLM (Additive Quantization of Language Model) integration file"
|
|
|
|
|
|
from ..utils import is_accelerate_available, is_aqlm_available, is_torch_available
|
|
|
|
|
|
if is_torch_available():
|
|
import torch.nn as nn
|
|
|
|
|
|
def replace_with_aqlm_linear(
|
|
model,
|
|
quantization_config=None,
|
|
linear_weights_not_to_quantize=None,
|
|
current_key_name=None,
|
|
has_been_replaced=False,
|
|
):
|
|
"""
|
|
Public method that recursively replaces the Linear layers of the given model with AQLM quantized layers.
|
|
`accelerate` is needed to use this method. Returns the converted model and a boolean that indicates if the
|
|
conversion has been successfull or not.
|
|
|
|
Args:
|
|
model (`torch.nn.Module`):
|
|
The model to convert, can be any `torch.nn.Module` instance.
|
|
quantization_config (`AqlmConfig`):
|
|
The quantization config object that contains the quantization parameters.
|
|
linear_weights_not_to_quantize (`list[str]`, *optional*):
|
|
A list of nn.Linear weights to not convert. If a parameter path is in the list (e.g. `lm_head.weight`), the corresponding module will not be
|
|
converted.
|
|
current_key_name (`list`, *optional*):
|
|
A list that contains the current key name. This is used for recursion and should not be passed by the user.
|
|
has_been_replaced (`bool`, *optional*):
|
|
A boolean that indicates if the conversion has been successful or not. This is used for recursion and
|
|
should not be passed by the user.
|
|
"""
|
|
if not is_aqlm_available():
|
|
raise ValueError("AQLM is not available. Please install it with `pip install aqlm[cpu,gpu]`")
|
|
|
|
if not is_accelerate_available():
|
|
raise ValueError("AQLM requires Accelerate to be installed: `pip install accelerate`")
|
|
|
|
if linear_weights_not_to_quantize is None:
|
|
linear_weights_not_to_quantize = []
|
|
|
|
from accelerate import init_empty_weights
|
|
from aqlm import QuantizedLinear
|
|
|
|
for name, module in model.named_children():
|
|
if current_key_name is None:
|
|
current_key_name = []
|
|
current_key_name.append(name)
|
|
|
|
if isinstance(module, nn.Linear):
|
|
# Check if the current key is not in the `linear_weights_not_to_quantize`
|
|
if ".".join(current_key_name) + ".weight" not in linear_weights_not_to_quantize:
|
|
with init_empty_weights():
|
|
in_features = module.in_features
|
|
out_features = module.out_features
|
|
|
|
model._modules[name] = QuantizedLinear(
|
|
in_features,
|
|
out_features,
|
|
bias=module.bias is not None,
|
|
in_group_size=quantization_config.in_group_size,
|
|
out_group_size=quantization_config.out_group_size,
|
|
num_codebooks=quantization_config.num_codebooks,
|
|
nbits_per_codebook=quantization_config.nbits_per_codebook,
|
|
)
|
|
has_been_replaced = True
|
|
|
|
# Store the module class in case we need to transpose the weight later
|
|
model._modules[name].source_cls = type(module)
|
|
# Force requires grad to False to avoid unexpected errors
|
|
model._modules[name].requires_grad_(False)
|
|
if len(list(module.children())) > 0:
|
|
_, has_been_replaced = replace_with_aqlm_linear(
|
|
module,
|
|
quantization_config=quantization_config,
|
|
linear_weights_not_to_quantize=linear_weights_not_to_quantize,
|
|
current_key_name=current_key_name,
|
|
has_been_replaced=has_been_replaced,
|
|
)
|
|
# Remove the last key for recursion
|
|
current_key_name.pop(-1)
|
|
return model, has_been_replaced
|