ai-content-maker/.venv/Lib/site-packages/transformers/models/nezha/configuration_nezha.py

104 lines
4.8 KiB
Python

from ... import PretrainedConfig
from ..deprecated._archive_maps import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
class NezhaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of an [`NezhaModel`]. It is used to instantiate an Nezha
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Nezha
[sijunhe/nezha-cn-base](https://huggingface.co/sijunhe/nezha-cn-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, optional, defaults to 21128):
Vocabulary size of the NEZHA model. Defines the different tokens that can be represented by the
*inputs_ids* passed to the forward method of [`NezhaModel`].
hidden_size (`int`, optional, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, optional, defaults to 3072):
The dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, optional, defaults to "gelu"):
The non-linear activation function (function or string) in the encoder and pooler.
hidden_dropout_prob (`float`, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
(e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, optional, defaults to 2):
The vocabulary size of the *token_type_ids* passed into [`NezhaModel`].
initializer_range (`float`, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.
classifier_dropout (`float`, optional, defaults to 0.1):
The dropout ratio for attached classifiers.
is_decoder (`bool`, *optional*, defaults to `False`):
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
Example:
```python
>>> from transformers import NezhaConfig, NezhaModel
>>> # Initializing an Nezha configuration
>>> configuration = NezhaConfig()
>>> # Initializing a model (with random weights) from the Nezha-base style configuration model
>>> model = NezhaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "nezha"
def __init__(
self,
vocab_size=21128,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
max_relative_position=64,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
classifier_dropout=0.1,
pad_token_id=0,
bos_token_id=2,
eos_token_id=3,
use_cache=True,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.max_relative_position = max_relative_position
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.classifier_dropout = classifier_dropout
self.use_cache = use_cache